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With an accuracy sufficient for engineering applications, the problem of motion 
of an elastoviscous liquid between disks with self-heating is solved. The the- 
oretical dependences are compared with experimental data for the normal stress. 

i. The problem is considered in connection with the need to calculate the motion of 
polymer liquid in the seal of a rotating axle of new type [i], the action of which is based 
on normal stress. In addition, it may be used to investigate disk extrusion [2]. 

As a preliminary, the experimental apparatus for studying the motion of a polymer medium 
between disks with simultaneous measurement of the radial normal stress is discussed (Fig. I). 
The polymer medium 1 is in a gap of thickness H = 2h (H = 1.7"10 -3 m) between disks 2 and 
3 of radius Rl. The lower disk rotates at constant angular velocity ~; the upper disk is 
motionless and rigidly connected to the cylindrical frame 4. In disk 3, there is an aperture 
of radius R 2 (R 2 = 10 -3 , 7"10 -3 , 1.5-10 -2 m; R I = 4"10 -2 m). Part of the frame volume is 
also filled with polymer medium 5, which is practically undeformed. This serves to isolate 
the polymer deformed in the gap 1 from the water 6 which fills the remainder of the cylindrical 
frame (in the presence of water, breakaway of the deformed polymer medium from the wall is 
possible [i]). In disk rotation in the polymer medium, as well as tangential stress, radial 
stress develops, in particular; its action is transmitted through the aperture to the motion- 
less water, the pressure Pl in which is measured by manometer 7. 

The influence of the velocity of disk rotation ~ and the geometric dimensions R2, h on 
PI is experimentally investigated in the present work. 

If R 2 ~ h << RI, the influence of the aperture on the motion between the disks may be 
disregarded. When R 2 > h (R 2 = 7-10 -~ m and 1.5-10 -2 m, H = 1.7-10-s), the contribution of 
the neutral region to the experimentally measurable pressure PI is eliminated. To this end, 
the (exploratory) experiments are conducted both with complete filling of the gap between 
the disks with polymer and with filling only of the neutral zone. 

6 �9 7 
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P 

Fig. I. Experimental apparatus. 
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Fig. 2. Flow curve and first difference of normal stress 
(i) for a melt of polydisperse polyisobutylene with MM 
5.7.103 in isothermal flow; the curves are theoretical de- 
pendences, oi, o12 , N, m2; y, sea -~. 

Fig. 3. Shear between two parallel plates: a) shear 
scheme; b) dependence of the true dimensionless shear ve- 
locity r on the shear velocity of isothermal motion Fis in 
the motion of a system with self-heating for different 
values of the parameter H: i) 5.47"I0-S; 2) 2.19"i0-s; 
3) 4.92"i0 -s. 

The temperature of the disk: 3 and the frame 4 are maintained constant. To this elld, 
the disk 3 and frame 4 are hollow, to permit the circulation of cooling liquid; disk 2 is 
either cooled by free liquid jets (temperature of the disk as in disk 3) or is heat-immlated. 

A polyisobutylene melt with molecular mass MM = 5.7.103 and the greatest newtonian viscos- 
ity D ~ 103 Pa-sec (at a temperature To = 20~ is investigated. The flow curve o12(~:! and 
the first normal-stress difference of(i) obtained experimentally with a simple steady shift 
(20~ for this melt are shown by points in Fig. 2. 

2. First consider the problem of inertialess steady flow of an elastoviscous medium 
between parallel plates of infinite length in conditions of self-heating. This problem was 
solved for a power-law liquid in [3], and for a Maxwellian single-mode medium in [4]. 

Suppose that the velocity of the upper plate v I = v = const, and the lower plate Js mo- 
tionless. The temperature at the upper and lower plates T = T o = const. The motion ia in- 
vestigated in the rectangular coordinate system Oxlx2x 3. The coordinate origin (Fig. 2a) 
is placed in the center of the gap, the width of which is H = 2h. Axis i is directed elong 
the motion and axis 2 perpendicular to the plate. 

In flow with self-heating of the system, it is assumed that the shear flow at each point 
of the medium is conserved. In this case, the shear velocity i is not constant, as in the 
isothermal case, but depends on the coordinate x=. 

The stress components in shear are calculated on the basis of a version of the Maxwellian 
model [5]. Connecting N such models in parallel, it is found that 

N 

,~  = ~ .  - ~ = 4 ~,~ (~,~,ln) f (c~,) (c~, - -  c ; l ) ,  
h = l  

N 

~ = %~ - -  ~ = 2 ~ (~/t~) [ - -  2 + (c~/2 + C-f n/2) - -  f (C~,) (C~ - -  C~-~)], 
h = l  

N 

~1~ = 4 ~ (~h/n) [ (oh), [ (Oh) = ( c~ /2 . -  c-fn/2)/(Ch - -  c-El), 
h ~  1 

C 2 _ _  C - 2  h = 4F7~, F ~ -  "~0 i ,  F h = J~hF, [~h = 0k /01 ,  

(1) 

where ~k does not depend on the temperature, according to the principle of temperature-~=ime 
superposition [6]. 
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The heat-conduction equation with steady shear 

_ 0~7"  

r e l a t e s  t h e  s h e a r  v e l o c i t y  ~ and t h e  t e m p e r a t u r e  T. Note  t h a t  t h e  h e a t  s o u r c e  o~2 ~ ( i n  t h e  
g e n e r a l  c a s e ,  f ro .e)  r e m a i n s  t h e  same in  n o n s t e a d y  f low [ 7 ] .  Th i s  does  n o t  l e a d  t o  i n s t a b i l -  
i t y  o f  t h e  s t e a d y  C o u e t t e  f l o w ,  in  c o n t r a s t  t o  t h e  c a s e  f ro .%  [ 8 ] .  

A c c o r d i n g  t o  t h e  d e f i n i t i o n  o f  t h e  s h e a r  v e l o c i t y  

dr1 (3) 
dx~ 

Suppose  t h a t  t h e  r e l a t i v e  t e m p e r a t u r e  i n c r e m e n t  in  s e l f - h e a t i n g  o f  t h e  s y s t e m  i s  hT/ 
To << 1. Th i s  c o n d i t i o n  i s  u s u a l l y  s i g n i f i c a n t  b e c a u s e  o f  t h e  t h e r m o d e s t r u c t i o n  o f  p o l y m e r s .  
Then t h e  d e p e n d e n c e  o f  t h e  c o n s t a n t s  o f  t h e  medium on t h e  t e m p e r a t u r e  i s  as  f o l l o w s  [6] 

0~, = Or exp [--  m (T - -  To)l, ~ = const, m = E/RT~. (4) 
Equations (i)-(4), with the above boundary conditions, describe the isothermal motion 

of a medium with self-heating in steady shear. 

The solution of the problem is sought under the assumption that the dimensionless de- 
formation rate r is constant with fixed To and v. If the dimensionless quantities T*= m(T-- 
T~, ~=xl/h, u=v10(o)r/Fh, 8= ~1~(Fa~)Fm~/(~0(0)1), are introduced, then from [3, 4, 9] 

T* = In a - -  In [c~ (~ ] / a -~ ) l ,  (5 )  

u = V 2 /8 ith  V Ti) + th l, (6)  

Z = cM ] /~8/2 ,  (7 )  

where a is the constant of integration. 

Since when $ = 1 the dimensionless velocity u = 2ris/F (ris = v0(0)i/2h is the dimension- 
less shear velocity in isothermal flow), it follows from Eq. (6) that 

r (8)  

I t  f o l l o w s  f rom Eq. (8 )  t h a t  r i s  i s  a f u n c t i o n  o f  r ,  s i n c e  6 and ~ depend on F. Thus ,  
f rom t h e  s p e c i f i e d  r i s ,  Eq. (8 )  y i e l d s  t h e  u n i q u e  v a l u e  o f  t h e  d i m e n s i o n l e s s  d e f o r m a t i o n  r a t e  
r ,  r e a l i z e d  in  f l ow  w i t h  s e l f - h e a t i n g .  S i n c e  f i (8)  i s  t w o - v a l u e d  - s ee  Eq. (7 )  - each  v a l u e  
o f  r c o r r e s p o n d s  t o  two v a l u e s  o f  r i s .  Thus ,  w i t h  t h e  same s t r e s s  s t a t e  in  Eq. ( 1 ) ,  t h e r e  a r e  
two d i f f e r e n t  t e m p e r a t u r e  - Eq. (5 )  - and v e l o c i t y  - Eq. (6)  - p r o f i l e s .  

In  F i g .  3b, t h e  d e p e n d e n c e  o f  r on r i s  i s  shown f o r  d i f f e r e n t  v a l u e s  o f  t h e  d i m e n s i o n l e s s  
p a r a m e t e r  H=2~lm~]xS(o)l. The r e l a t i o n  be tween  6 and P i s  as  f o l l o w s  (ah=~k/~l,  ~k=Sk/81) 

8 = rn.  (9) 
2 ~  

F o r  e a c h  v a l u e  o f  H, t h e r e  i s  a maximum p o s s i b l e  v a l u e  r = r m, which  d e c r e a s e s  w i t h  i n -  
c r e a s e  in  ~. The s t r a i g h t  l i n e  in  F i g .  3b c o r r e s p o n d s  t o  i s o t h e r m a l  c o n d i t i o n s  o f  m o t i o n .  
I t  i s  e v i d e n t  f rom F i g .  3b t h a t ,  w i t h  r e d u c t i o n  in  ~ ( r e d u c t i o n ,  f o r  example ,  in  t h e  gap be-  
tween  t h e  p l a n e s  2 h ) ,  t h e r e  i s  i n c r e a s e  in  t h e  w i d t h  o f  t h e  r a n g e  o f  r ,  where  r z r i  s and 
s e l f - h e a t i n g  i s  n o t  s i g n i f i c a n t .  In  t h e  r e g i o n  o f  s i g n i f i c a n t  s e l f - h e a t i n g  w i t h  f i x e d  a ,  
t h e  d e p e n d e n c e  o f  F on r i s  d e c r e a s e s .  A c c o r d i n g  t o  Eq. ( 1 ) ,  a l l  t h e  s t r e s s  components  a l s o  
d e c r e a s e  w i t h  i n c r e a s e  in  F i s  in  t h i s  r e g i o n .  

I t  f o l l o w s  f rom Eqs.  (5 )  and (6 )  t h a t  

~ = 0 0 T  = 0 ,  v , (O)=  v ( 2 )  a~ - ~  u(O) = . (10)  

The s o l u t i o n  in  Eqs.  (5 )  and (6)  w i t h  t h e  c o n d i t i o n  in  Eq. (10)  c o r r e s p o n d s  t o  t h e  f o l -  
lowing  shear motion: the plate with the coordinate $ : -1 is immobile and thermostatted 
(T = To) ; the plate with the coordinate $ = 0 is heat-insulated, and moves at a velocity v/2. 
The distance between the plates is h. 
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3. For theoretical consideration of the motion between two disks, the cylindrical co- 
ordinate system r, @, z is introduced (Fig. i), with the coordinate origin at the midpoint 
of the gap between the disks. The equation for the temperature of the medium, taking ac- 
count of angular symmetry in steady motion, is as follows 

~" ~[" OZToz~ 02T 1 OT i 
-k Or ---7-4c r Or = - - t r o . e .  (11) 

The boundary c o n d i t i o n s  wi th  motion of  t h e  medium between the  d i sks  (wi th  no i n t e r n a l  
aperture) are: for the temperature: 

T l z = - h = T ' z = h : T o ,  T[r=R~=To, O ~ /  = 0 ,  (12) 
or  I r~o 

for the velocity: 
v l , ~ h  = 0, vb=h = ~r .  (13) 

For the stress, the boundary conditions are discussed below. Note that the fourth conlition 
in Eq. (12) is used in the case where the aperture R 2 is small (Fig. i), and its influence 
on the motion may be neglected. 

Since h << RI, it may be assumed, at some distance from the external edge and synm~etry 
axis of the disks, that the temperature variation over the coordinate z is considerably larger 
than that over the radius r, that is 

OZT 1 OT 0aT > - - + - - - - ,  (14) 
Oz 2 Or= r Or 

and the equation for the temperature of the medium takes the form 

--aZT = - - t r ~ . e .  (15) 
Oz 2 

The second and t h i r d  boundary c o n d i t i o n s  in Eq. (12) fo r  t h i s  equa t ion  are  not  s i g n i -  
f i c a n t .  The solution of this problem, at the level of isotropic pressure, coincides w:~th 
the solution of the problem of Couette motion between parallel plates (Sec. 2) at each fixed 
r. In particular, it follows form this that the rheological components of the stress (~l, 
02, o12 and the dimensionless shear velocity F are single-valued functions 

r i s  = ~O(o) t r /2h ,  (16) 

i . e . ,  of  the  r a d i u s .  

The s a t i s f a c t i o n  of  Eq. (14) i s  t e s t e d  from the  s o l u t i o n  T(r ,  z) ob ta ined ;  see Eqs. (5) ,  
(7) ,  (8) ,  and (16).  As noted above, t h i s  c o n d i t i o n  ceases  to hold a t  the  c en t e r  and edge 
of the disks. 

In the central zone (r ~ h), the solution is not constructed (although an approxinate 
solution is not difficult to construct). This need not be done when R 2 ~ h, with weak heating 
of the medium (in the region of comparison with experiment) and a mean temperature of the 
medium+ <T> ~ T O . In the case when R 2 > h, the central region (r < R 2) need not be taken 
into account, because its influence on the change in pressure is eliminated in accordance 
with the experimental procedures (Sec. i). 

At the ends of the disk (R~ - r ~ h), even isothermal flow is distorted by the influence 
of the edge, which is difficult to take into account; therefore, accurate calculation of the 
flow for engineering purposes, taking account of self-heating of the, medium at the edge, does 
not make sense. A fairly rough estimate of the influence of the edge on the polymer motion 
between the disks may be made. Equation (11) for the temperature of the medium is averaged 
over the gap, assuming that the motion at the edge is nevertheless close to shear motion. 
In dimensionless form 

where 

+ -- -- g(r); (17) 
09 ~ p 09 

tThe third boundary condition in Eq. (12) is thus approximately satisfied. 
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T * = m ( T - - T o ) ;  <T* > 1 i : =  ~ Z l  / 1, 2 -"1 T*d~; ~= / 

r . R~ ~T* I 
P = nl K(D) --- h2 a~ l~=I; ~'tr(F) = 60 Fis  

' " T 

~0<o)~ 

In writing the function I(F), the mean expression for the deformation rate in Eq. (3) 
obtained taking account of the boundary conditions in Eq. (13) is used 

1 
Fis/p = ___1 ( exp T*d~, 

' 2 ~ 

where Fis is the deformation rate in an isothermal process; see Eq. (16). 

The dependence of the dimensionless deformation rate on the mean temperature <T*> may 
be taken in the following approximate form% 

r i d r ~ e x p <  T * > .  

In the case where T* << i, the functional dependence in Eq. 

~ s , / r =  1 q -  ( T * > .  

Note  a l s o  t h a t  - s e e  Eq. (12)  - when 0 = 1 

T * = < T * >  = 0 ,  K ( I ) = O .  

(18) 

(19) 
(19) is asymptotically accurate: 

(20)  

(21) 
The solution in Eq. (21) in the vicinity of 9 = 1 may be written as a power series in (i - p): 

< T* > = ta ( 1 - -  p) - -  t2 (1 - -  9)zq-O[(1 --9)3], (22)  

where t I ~ 0, t 2 ~ 0 are unknown constants. Retaining only the first two terms in Eq. (22), 
substituting Eq. (22), into Eq. (17), and taking account of Eqs. (20) and (21), it is found 
that 

q + 2t~ = G Iris (R~)]. (23)  

Then the solution in Eq. (22)(denoted by a minus sign) is combined with the mean solu- 
tion <T*>(p)l+ of Eq. (15) at some radius 9 = p*: 

(24) 

< T* > I+-~ < T* ~ !_ = t~ (1 --9*)--t2(1---p*)z, 

0 < opT* > l+ 0 ( 09T* > _ : tl q_ 2to. (1 - -  9*). 

Thus, tl, t2, and p* are determined from Eqs. (23) and 924). It follows from Eq. (20) - 
or approximate Eq. (i0) - which is valid for both the combined solutions that F+ = F_. 

Thus, the dimensionless deformation-rate function F(r) is known over all ranges of r. 
The rheological component of the stress tensor is calculated form the known F(r) according 
to Eq. (I). To determine the pressure, which is measured by a manometer (Fig. I), the equi- 
librium equation of the medium is used (noninertial approximation) 

aarr ~ ar~--%~ =0. (25) 
Or r 

Assuming that (in the given experiments, P2 = 0) 

~rdr-R2 = &, ~-I:=~, = G, 

and integrating Eq. (25), it is found that 

%Equation (19) is derived on the basis that, in the subsequent calculations, T* < 3, and the 
exponential for 0 < T* < 3 may be roughly approximated by a linear function 1 + ~T* (~ = 
const). 
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Fig. 4. Dependence of the pressure 
Pl/2~l and moment M/2~IR ~ developing 
between parallel disks on the dimension- 
less deformatin rate Fis(R I) for flow 
with self-heating of the system with 

= 3.2"i0 -6 h/R1 = 2.1"10-2: I) 
R2/R~ = 2.5"10-2; 2) 1.75"I0-i; 3) 
3.75" 10 -I with thermostatting of 
one disk; 4) R2/R I = 2.5"10 -2 with 
thermostatting of both disks; the 
points correspond to experiment and 
the curves to calculation. 

Pl = P2+~' at+a2 dr. (26) 
�9 F 
R~ 

The moment overcome in the rotation of a disk with an aperture is 

R~ 

M = 2~ j' a12rdr. (27) 
R2 

Thus, us ing  Eqs. (26) and (27) ,  a f t e r  t he  s u b s t i t u t i o n  of  the  c o r r e s p o n d i n g  e x p r e s s i o n s  
f o r  the  s t r e s s - t e n s o r  components from Eq. ( 1 ) ,  i t  i s  s u f f i c i e n t l y  s imple  ( f o r  example,  by 
the  Simpson method) to  de t e rmine  the  working c h a r a c t e r i s t i c s  of  the  s e a l  ( t h e  p r e s s u r e  ( l i f -  
f e r e n c e  manta ined and the  f r i c t i o n a l  moment) from the  known d i s t r i b u t i o n  of  the  d i m e n s i o n l e s s -  
d e f o r m a t i o n  r a t e  F wi th  r e s p e c t  to  the  r a d i u s  r .  

In the  r e g i o n  P < P*, t h i s  d i s t r i b u t i o n  i s  sought  n u m e r i c a l l y ,  by combined s o l u t i o n  o f  
Eqs. (7)  and (8) u s ing  i t e r a t i v e  methods.  To o b t a i n  t he  analogous  d i s t r i b u t i o n  F ( r )  in  the  
r e g i o n  P > P*, Eq. (22) f o r  t he  d i s t r i b u t i o n  of  the  mean t e m p e r a t u r e  over  the  r a d i u s  mu~t 
be used;  t h i s  e x p r e s s i o n  c o n t a i n s  two unknown c o n s t a n t s  t l  and t 2. As a r e s u l t ,  t o  f i n d  t h e  
complete  s o l u t i o n  of  the  whole problem, a l l  t h a t  remains i s  to  de t e rmine  t h e s e  cons t an t~  and 
t he  va lue  of  p*, which i s  s imply  accompl i shed  by numer i ca l  s o l u t i o n  of  t he  sys tem in Eq~. 
(23) and (24) us ing  f i n i t e - d i f f e r e n c e  and i t e r a t i v e  methods.  

As an example, the motion between disks for polyisobutylene melt MM = 5.7.103 is c~l- 
culated numerically, with the following values of the constants: N = 2, 81 = 10 sec; 8~ = 
1.3"10 -I sec; BI = 4-3"102 Pa; ~2 = 3"103 Pa; n = 3.2; ~ = 1.5"10 -I W/m'deg; E = 14.2 kcal/ 
mole'deg (T = 22~ The rheological constants are determined from isothermal experimeEts; 
see Fig. 2 and Eq. (I). 

Experiment shows that there are groups of polymers in which the constants n, ~k, and 
8k - see Eq. (9) - are approximately constant. Therefore, it is expedient to write the the- 
oretical dependences (Fig. 4) in the form of P~/P2DI (P2 = 0) and M/2~IR_ on the dimension- 
less deformation rate of isothermal motion ris(R I) = ~Rl@(0)i/2h - see Eq. (8) - with fixed 
dimensionless parameters h/Rl, R2/RI, and ~ - see Eq. (9). The continuous curves in Fig. 4 
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show the dependences obtained without taking account of the edge,% and the dashed curves take 
it into account; see Eqs. (17)-(24). It follows from Fig. 4 that there is agreement between 
the theoretical and experimental data. Taking account of the edge in the given parameter 
range has practically no influence on the qualitative form of the curves, and weak quantita- 
tive influence. For more viscous liquids, where self-heating of the system under the same 
conditions is more considerable, the contribution of the stress from the moment at the edge 
to the pressure and the moment is increased. 

It is evident ~ from Fig. 4 that increase in R2/R I is associated with decrease in the pres- 
sure and moment with a fixed number of turns of the disk and more pronounced self-heating 
of the system (see the maximum on the curves). The latter occurs because F(ris) increases 
with increase in Fis (Fig. 3) with fixed radius r in the central region (where self-heating 
is insignificant), and decreases in the edge region (when self-heating is significant). This 
leads to the appearance of maxima on the curves of PI/2~I and M/2~IR ~ as a function of Fis(R l) 
with sufficiently large R2/R I, because the relative contribution of the edge region increases. 

With fixed geometric dimensions, pressure Pl/2~1 and moment M/2~IR~, and for sufficiently 
many rotations, ris(R I) is naturally larger in the case where both disks are thermostatted 
than in the case where one of the disks is thermally insulated (Fig. 4, curves and points 
2, 4). Curves 2 and 4 coincide with small numbers of rotations, which indicates near-iso- 
thermal flow here. 

Numerical calculations also show that, with a fixed number of rotations and fixed radii 
R I and R2, the pressure and moment sharply decrease with increase in the gap H and the tem- 
perature at the thermostatted surfaces T o . In the first case, T o is fixed; in the second, H. 

NOTATION 

RI, disk radius; R2, radius of aperture at center of disk; H = 2h, thickness of gap be- 
tween disks or plates; v I = v, plate velocity in Couette flow; T, temperature; To, tempera- 
ture of thermostatted surface; ,, e , stress and deformation-rate tensors; ~, shear velocity; 
oij, components of stress tensor; ~2, tangential component of stress tensor in shear; o I and 
o2, first and second differencesof normal stress; Ck, internal parameter characteristizing 
the elastic deformation in the system; F, dimensionless shear velocity; N, number of relax- 
tional mechanisms in rheological�9 ~k, elastic modulus; 8 k and 8(0)k, relaxation times 
at temperatures T and To; n, exponent of elastic potential; ris, dimensionless deformation 
rate in isothermal process; ~, thermal conductivity; E, activation energy of viscous flow; 
R, universal gas constant; m = E/RT~, constant; ~, angular velocity of disk rotation; r, % 
z, cylindrical coordinates; p, dimensionless current radius; xl, x2, x3, rectangular coor- 
dinates; T* = m(T - To) , dimensionless temperature; t I and t2, constants; p*, radius at which 
the solutions are combined; Pl and P2, pressure at edges of disks; M, moment at disks; n, 
greatest Newtonian viscosity; vl, velocity of medium along axis xl; k, subscript denoting 
quantities in k-th Maxwellian relaxational mechanism; e~ , irreversible-deformation rate tensor. 
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LIMITING HEAT TRANSFER IN HORIZONTAL TWO-PHASE THERMOSIPHON 

M. K. Bezrodnyi and V. M. Podgoretskii UDC 536.27 

Experimental results on the heat-transfer crisis in a horizontal thermosiphon 
with steam heating are outlined. 

The wide use of autonomous heat-transfer devices - closed two-phase thermosiphons - en- 
tails comprehensive investigation of their characteristics in different operating conditions. 
The experimental material accumulated on the thermal and hydrodynamic characteristics ~f 
thermosiphons is basically related to the specific conditions of heat supply corresponding 
to boundary conditions of heat supply corresponding to boundary conditions of the second kind, 
which are modeled by means of electrical heating. Such rigorous heating conditions do not 
allow reliable experimental data to be obtained on the maximum heat-transfer capabilit]7 in 
investigating inclined and horizontal thermosiphons [1-3], since this leads to prematu]:e heat- 
ing of the evaporator wall along the upper generatrix on account of the stratification of 
the two-phase flow. To obtain experimental data on the limiting operating conditions of hor- 
zontal thermosiphons, investigations are undertaken with heat-supply boundary conditions of 
the third kind: steam heating. 

The experimental apparatus (Fig. i) includes: steam-generator i, steam-heating cham- 
ber 2, experimental thermosiphon 3, and heat exchanger 4. The steam generator consists of 
a vertical tube 5 in which heat is liberated on account of direct transmission of a constant 
current and steam is generated, separation chamber 6, and external discharge channel 7. Heat 
supply to the thermosiphon evaporator is ensured on account of condensation of the steam ob- 

 i'9 i J iii / ' ' < V  \ i] \ 

i , i ~ 8  

Fig. I. Experimental apparatus. 
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